Desethylamiodarone—A metabolite of amiodarone—Induces apoptosis on T24 human bladder cancer cells via multiple pathways

نویسندگان

  • Zita Bognar
  • Katalin Fekete
  • Csenge Antus
  • Eniko Hocsak
  • Rita Bognar
  • Antal Tapodi
  • Arpad Boronkai
  • Nelli Farkas
  • Ferenc Gallyas
  • Balazs Sumegi
  • Arpad Szanto
چکیده

Bladder cancer (BC) is a common malignancy of the urinary tract that has a higher frequency in men than in women. Cytostatic resistance and metastasis formation are significant risk factors in BC therapy; therefore, there is great interest in overcoming drug resistance and in initiating research for novel chemotherapeutic approaches. Here, we suggest that desethylamiodarone (DEA)-a metabolite of amiodarone-may have cytostatic potential. DEA activates the collapse of mitochondrial membrane potential (detected by JC-1 fluorescence), and induces cell death in T24 human transitional-cell bladder carcinoma cell line at physiologically achievable concentrations. DEA induces cell cycle arrest in the G0/G1 phase, which may contribute to the inhibition of cell proliferation, and shifts the Bax/Bcl-2 ratio to initiate apoptosis, induce AIF nuclear translocation, and activate PARP-1 cleavage and caspase-3 activation. The major cytoprotective kinases-ERK and Akt-are inhibited by DEA, which may contribute to its cell death-inducing effects. DEA also inhibits the expression of B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) and reduces colony formation of T24 bladder carcinoma cells, indicating its possible inhibitory effect on metastatic potential. These data show that DEA is a novel anti-cancer candidate of multiple cell death-inducing effects and metastatic potential. Our findings recommend further evaluation of its effects in clinical studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Econazole Nitrate Induces Apoptosis in MCF-7 Cells via Mitochondrial and Caspase Pathways

Econazole nitrate (EN), a synthetic compound, is now in use as a routine antifungal drug. EN was shown to have antitumor effect, the tumor cell killing mechanisms, however, remain unclear. In this research, the apoptosis-inducing effect of EN on MCF-7 cells was investigated. The results showed that EN inhibited the proliferation of MCF-7 cells in a time- and dose-dependent manner by MTT method ...

متن کامل

Licochalcone A-Induced Human Bladder Cancer T24 Cells Apoptosis Triggered by Mitochondria Dysfunction and Endoplasmic Reticulum Stress

Licochalcone A (LCA), a licorice chalconoid, is considered to be a bioactive agent with chemopreventive potential. This study investigated the mechanisms involved in LCA-induced apoptosis in human bladder cancer T24 cells. LCA significantly inhibited cells proliferation, increased reactive oxygen species (ROS) levels, and caused T24 cells apoptosis. Moreover, LCA induced mitochondrial dysfuncti...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Econazole Nitrate Induces Apoptosis in MCF-7 Cells via Mitochondrial and Caspase Pathways

Econazole nitrate (EN), a synthetic compound, is now in use as a routine antifungal drug. EN was shown to have antitumor effect, the tumor cell killing mechanisms, however, remain unclear. In this research, the apoptosis-inducing effect of EN on MCF-7 cells was investigated. The results showed that EN inhibited the proliferation of MCF-7 cells in a time- and dose-dependent manner by MTT method ...

متن کامل

Altholactone induces reactive oxygen species-mediated apoptosis in bladder cancer T24 cells through mitochondrial dysfunction, MAPK-p38 activation and Akt suppression.

Human bladder cancer is an aggressive tumor which frequently resists chemotherapy. Therefore, the search for new therapeutic agents is of great importance. Altholactone, isolated from Goniothalamus sp., has been reported to inhibit the growth of various types of cancer cells. However, no prior research has been conducted to demonstrate the antiproliferative potential of altholactone on bladder ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017